

 Navigation

 	
 index

 	
 next |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Welcome to the Mirantis OpenStack LMA Collector Documentation!

	Overview
	Requirements

	Limitations

	Release Notes
	Version 0.9.0

	Version 0.8.0

	Version 0.7.0

	Installation
	LMA Collector Fuel Plugin installation using the RPM file of the Fuel Plugins Catalog

	LMA Collector Fuel Plugin installation from source

	Configuration Guide
	Plugin configuration

	Plugin verification

	Troubleshooting

	Alarms Configuration Guide
	Overview

	Alarm Configuration

	GSE configuration

	Licenses
	Third Party Components

	Puppet modules

	Appendix A: References

	Appendix B: List of metrics
	System

	Apache

	MySQL

	RabbitMQ

	HAProxy

	Memcached

	Libvirt

	OpenStack

	Ceph

	Pacemaker

	Clusters

	LMA self-monitoring

	Elasticsearch

	InfluxDB

Indices and Tables

	Search Page

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Overview

The Logging, Monitoring & Alerting (LMA) Collector is an advanced
monitoring agent solution that should be installed on each of the
OpenStack nodes you want to monitor.

The LMA Collector (or Collector for short) is a key component
of the LMA Toolchain project [https://launchpad.net/lma-toolchain]
as shown in the figure below:

[image: _images/toolchain_map.png]
Each Collector is individually responsible for supporting the sensing,
measurement, collection, analysis and alarm functions for the node
it is running on.

A wealth of operational data is collected from a variety of sources including
log files, collectd and RabbitMQ for the OpenStack notifications.

Note

The Collector which runs on the active controller of the control plane
cluster, is called the Aggregator because it performs additional
aggregation and multivariate correlation functions to compute service
healthiness metrics at the cluster level.

A primary function of the Collector is to sanitise and transform the ingested
raw operational data into internal messages using the
Heka message structure [https://hekad.readthedocs.org/en/stable/message/index.html].
This message structure is used within the Collector’s framework to match, filter
and route messages to plugins written in
Lua [http://www.lua.org/] which perform various
data analysis and computation functions.

As such, the Collector may also be described as a pluggable framework
for operational data stream processing and routing.

Its main building blocks are:

	collectd [https://collectd.org/] which is bundled with a collection of
monitoring plugins. Many of them are purpose-built for OpenStack.

	Heka [https://github.com/mozilla-services/heka] (a golang data processing
swiss army knife by Mozilla) which is the cornerstone component of the Collector.
Heka supports out-of-the-box a number of input and output plugins that allows
the Collector to integrate with a number of external systems’ native
protocol like Elasticsearch, InfluxDB, Nagios, SMTP, Whisper, Kafka, AMQP and
Carbon to name a few.

	A collection of Heka plugins written in Lua to decode, process and encode the
operational data.

There are three types of Lua plugins running in the Collector:

	The input plugins which collect, sanitize and transform the raw
data into an internal message representation which is injected into the
Heka pipeline for further processing.

	The filter plugins which execute the analysis and correlation functions.

	The output plugins which encode and transmit the messages to external
systems like Elasticsearch, InfluxDB or Nagios where the data can
be further processed and persisted.

The output of the Collector / Aggregator is of four kinds:

	The logs and notifications which are sent to Elasticsearch for indexing.
Elasticsearch combined with Kibana provides insightful log analytics.

	The metrics which are sent to InfluxDB.
InfluxDB combined with Grafana provides insightful time-series analytics.

	The health status metrics for the OpenStack services which are sent to Nagios
(or via SMTP) for alerting and escalation purposes.

	The annotation messages which are sent to InfluxDB. The annotation messages contain
information about what caused a service cluster or node cluster to change state.
The annotation messages provide root cause analysis hints whenever possible.
The annotation messages are also used to construct the alert notifications that are
sent via SMTP or to Nagios.

Requirements

	Requirement
	Version/Comment

	Mirantis OpenStack
	8.0

	A running Elasticsearch server (for log analytics)
	1.7.4 or higher, the RESTful API must be enabled over port 9200

	A running InfluxDB server (for metric analytics)
	0.10.0 or higher, the RESTful API must be enabled over port 8086

	A running Nagios server (for infrastructure alerting)
	3.5 or higher, the command CGI must be enabled

Limitations

	The plugin is not compatible with an OpenStack environment deployed with Nova-Network.

	The Elasticsearch output plugin of the Collector is configured to use the drop policy
which implies that the Collector will start dropping the logs and the OpenStack
notifications when the output plugin has reached a buffering limit that is currently
set to 1GB by default. This situation can typically happen when the Elasticsearch server
has been inaccessible for a long period of time.
This limitation will be addressed in a future release of the LMA Collector Plugin.

	When you re-execute tasks on deployed nodes using the Fuel CLI, hekad and
collectd services will be restarted on these nodes during the post-deployment
phase. See bug #1570850 [https://bugs.launchpad.net/lma-toolchain/+bug/1570850] for details.

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Release Notes

Version 0.9.0

	Changes
	Upgrade to Heka 0.10.0.

	Collect libvirt metrics on compute nodes.

	Detect spikes of errors in the OpenStack services logs.

	Report OpenStack workers status per node.

	Support multi-environment deployments.

	Add support for Sahara logs and notifications.

	Bug fixes
	Reconnect to the local RabbitMQ instance if the connection has been lost
(#1503251 [https://bugs.launchpad.net/lma-toolchain/+bug/1503251]).

	Enable buffering for Elasticsearch, InfluxDB, Nagios and TCP outputs to reduce
congestion in the Heka pipeline (#1488717 [https://bugs.launchpad.net/lma-toolchain/+bug/1488717], #1557388 [https://bugs.launchpad.net/lma-toolchain/+bug/1557388]).

	Return the correct status for Nova when Midonet is used (#1531541 [https://bugs.launchpad.net/lma-toolchain/+bug/1531541]).

	Return the correct status for Neutron when Contrail is used (#1546017 [https://bugs.launchpad.net/lma-toolchain/+bug/1546017]).

	Increase the maximum number of file descriptors (#1543289 [https://bugs.launchpad.net/lma-toolchain/+bug/1543289]).

	Avoid spawning several hekad processes (#1561109 [https://bugs.launchpad.net/lma-toolchain/+bug/1561109]).

	Remove the monitoring of individual queues of RabbitMQ (#1549721 [https://bugs.launchpad.net/lma-toolchain/+bug/1549721]).

	Rotate hekad logs every 30 minutes if necessary (#1561603 [https://bugs.launchpad.net/lma-toolchain/+bug/1561603]).

Version 0.8.0

	Support for alerting in two different modes:
	Email notifications.

	Integration with Nagios.

	Upgrade to InfluxDB 0.9.5.

	Upgrade to Grafana 2.5.

	Management of the LMA collector service by Pacemaker on the controller nodes for improved reliability.

	Monitoring of the LMA toolchain components (self-monitoring).

	Support for configurable alarm rules in the Collector.

Version 0.7.0

	Initial release of the plugin. This is a beta version.

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Installation

Prior to installing the LMA Collector Plugin, you may want to install the backend
services the Collector depends on. These backend services include:

	Elasticsearch

	InfluxDB

	Nagios

There are two options:

	Install these backend services automatically using the Fuel Plugins listed below.

	Elasticsearch-Kibana Fuel Plugin Installation Guide [http://fuel-plugin-elasticsearch-kibana.readthedocs.org/en/latest/installation.html#installation-guide].

	InfluxDB-Grafana Fuel Plugin Installation Guide [http://fuel-plugin-influxdb-grafana.readthedocs.org/en/latest/installation.html#installation-guide].

	Infrastructure Alerting Fuel Plugin Installation Guide [http://fuel-plugin-lma-infrastructure-alerting.readthedocs.org/en/latest/installation.html#installation-guide].

	Install these backend services manually outside of your OpenStack environment.
This installation must comply with the LMA Collector Plugin’s requirements.

LMA Collector Fuel Plugin installation using the RPM file of the Fuel Plugins Catalog

To install the LMA Collector Fuel Plugin using the RPM file of the Fuel Plugins
Catalog, follow these steps:

	Download the RPM file from the Fuel Plugins Catalog [https://software.mirantis.com/download-mirantis-openstack-fuel-plug-ins/].

	Copy the RPM file to the Fuel Master node:

[root@home ~]# scp lma_collector-0.9-0.9.0-1.noarch.rpm \
root@<Fuel Master node IP address>:

	Install the plugin using the Fuel CLI [http://docs.mirantis.com/openstack/fuel/fuel-7.0/user-guide.html#using-fuel-cli]:

[root@fuel ~]# fuel plugins --install lma_collector-0.9-0.9.0-1.noarch.rpm

	Verify that the plugin is installed correctly:

[root@fuel ~]# fuel plugins --list
id	name	version	package_version
1 | lma_collector | 0.9.0 | 4.0.0

LMA Collector Fuel Plugin installation from source

Alternatively, you may want to build the RPM file of the plugin from source
if, for example, you want to test the latest features, modify some built-in
configuration or implement your own customization.
But note that running a Fuel plugin that you have built yourself is at your own risk.

To install LMA Collector Plugin from source, you first need to prepare an
environement to build the RPM file.
The recommended approach is to build the RPM file directly onto the Fuel Master
node so that you won’t have to copy that file later on.

Prepare an environment to build the plugin on the Fuel Master Node

	Install the standard Linux development tools:

[root@home ~] yum install createrepo rpm rpm-build dpkg-devel

	Install the Fuel Plugin Builder. To do that, you should first get pip:

[root@home ~] easy_install pip

	Then install the Fuel Plugin Builder (the fpb command line) with pip:

[root@home ~] pip install fuel-plugin-builder

Note: You may also need to build the Fuel Plugin Builder if the package version of the
plugin is higher than the package version supported by the Fuel Plugin Builder you get from pypi.
In this case, please refer to the section “Preparing an environment for plugin development”
of the Fuel Plugins wiki [https://wiki.openstack.org/wiki/Fuel/Plugins]
if you need further instructions about how to build the Fuel Plugin Builder.

	Clone the plugin git repository:

[root@home ~] git clone https://github.com/openstack/fuel-plugin-lma-collector.git

	Check that the plugin is valid:

[root@home ~] fpb --check ./fuel-plugin-lma-collector

	And finally, build the plugin:

[root@home ~] fpb --build ./fuel-plugin-lma-collector

	Now that you have created the RPM file, you can install the plugin using the fuel plugins –install command:

[root@fuel ~] fuel plugins --install ./fuel-plugin-lma-collector/*.noarch.rpm

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Configuration Guide

Plugin configuration

To configure your plugin, you need to follow these steps:

	Create a new environment [http://docs.mirantis.com/openstack/fuel/fuel-7.0/user-guide.html#launch-wizard-to-create-new-environment] with the Fuel web user interface.

	Click on the ‘Settings’ tab of the Fuel web UI and select the ‘Other’ category.

	Scroll down through the settings until you find the ‘The Logging, Monitoring and
Alerting (LMA) Collector Plugin’ section. You should see a page like this.

[image: The LMA Collector settings]

	Tick the ‘The Logging, Monitoring and Alerting (LMA) Collector Plugin’ box and
fill-in the required fields as indicated below.

	Provide an ‘Environment Label’ of your choice to tag your data (optional).

	For the ‘Events Analytics’ destination, select ‘Local node’ if you plan to use the
Elasticsearch-Kibana Plugin in this environment. Otherwise, select ‘Remote server’
and specify the fully qualified name or IP address of an external Elasticsearch server.

	For the ‘Metrics Analytics’ destination, select ‘Local node’ if you plan to use the
InfluxDB-Grafana Plugin in this environment. Otherwise, select ‘Remote server’ and specify
the fully qualified name or IP address of an external InfluxDB server. Then, specify the
InfluxDB database name you want to use, a username and password that has read and write
access permissions.

	For ‘Alerting’, select ‘Alerts sent by email’ if you want to receive alerts sent by email
from the Collector. Otherwise, select ‘Alerts sent to a local cluster’ if you plan to
use the Infrastructure Alerting Plugin in this environment.
Alternatively, you can select ‘Alerts sent to a remote Nagios server’.

	For ‘Alerts sent by email’, you can specify the SMTP authentication method you want to use. Then,
specify the SMTP server fully qualified name or IP address, the SMTP username and password who
have the permissions to send emails.

	Finally, specify the Nagios server URL, username and password if you have chosen to send
alerts to an external Nagios server.

	Configure your environment [http://docs.mirantis.com/openstack/fuel/fuel-8.0/user-guide.html#configure-your-environment] as needed.

	Assign roles to the nodes [http://docs.mirantis.com/openstack/fuel/fuel-8.0/user-guide.html#assign-a-role-or-roles-to-each-node-server] for the environment.

	Verify networks [http://docs.mirantis.com/openstack/fuel/fuel-8.0/user-guide.html#verify-networks] on the Networks tab of the Fuel web UI.

	Deploy [http://docs.mirantis.com/openstack/fuel/fuel-8.0/user-guide.html#deploy-changes] your changes.

Note

The LMA Collector Plugin is a hot-pluggable plugin which means that it is possible to deploy
the LMA Collector in an environment that is already deployed.
To deploy the LMA Collector in an environment that is already deployed, you need to run
the command below from the Fuel master node, for every OpenStack node of the current deployment:

[root@nailgun ~]# fuel nodes --env <env_id> --node <node_id> --deploy

Plugin verification

Once the OpenStack environment is ready, you may want to check that both
the ‘collectd’ and ‘hekad’ processes of the LMA Collector are running on the OpenStack nodes:

[root@node-1 ~]# pidof hekad
5568
[root@node-1 ~]# pidof collectd
5684

Troubleshooting

If you see no data in the Kibana and/or Grafana dashboards, use the instructions below to troubleshoot the problem:

	Check if the LMA Collector service is up and running:

On the controller node(s)
[root@node-1 ~]# crm resource status lma_collector

On non controller nodes
[root@node-1 ~]# status lma_collector

	If the LMA Collector is down, restart it:

On the controller node(s)
[root@node-1 ~]# crm resource start lma_collector

On non controller nodes
[root@node-1 ~]# start lma_collector

	Look for errors in the LMA Collector log file (located at /var/log/lma_collector.log) on the different nodes.

	Look for errors in the collectd log file (located at /var/log/collectd.log) on the different nodes.

	Check if the nodes are able to connect to the Elasticsearch server on port 9200.

	Check if the nodes are able to connect to the InfluxDB server on port 8086.

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Alarms Configuration Guide

Overview

The process of running alarms in LMA is not centralized
(as it is often the case in conventional monitoring systems)
but distributed across all the Collectors.

Each Collector is individually responsible for monitoring the
resources and the services that are deployed on the node and for reporting
any anomaly or fault it may have detected to the Aggregator.

The anomaly and fault detection logic in LMA is designed
more like an “Expert System” in that the Collector and the Aggregator use facts
and rules that are executed within the Heka’s stream processing pipeline.

The facts are the messages ingested by the Collector
into the Heka pipeline.
The rules are either threshold monitoring alarms or aggregation
and correlation rules. Both are declaratively defined in YAML(tm) files
that can be modified.
Those rules are executed by a collection of Heka filter plugins written in Lua
organised according to a configurable processing workflow.

These plugins are called AFD plugins for Anomaly and Fault Detection plugins
and GSE plugins for Global Status Evaluation plugins.

Both the AFD and GSE plugins create metrics called respectively the AFD metrics
and the GSE metrics.

[image: Message flow for the AFD and GSE metrics]
Message flow for the AFD and GSE metrics

The AFD metrics contain information about the health status of a
resource such as a device, a system component like a filesystem, or service
like an API endpoint, at the node level.
Then, those AFD metrics are sent on a regular basis by each Collector
to the Aggregator where they can be aggregated and correlated hence the
name ‘aggregator’.

The GSE metrics contain information about the health status
of a service cluster, such as the Nova API endpoints cluster, or the RabbitMQ
cluster as well as the clusters of nodes, like the Compute cluster or
Controller cluster.
The health status of a cluster is inferred by the GSE plugins using
aggregation and correlation rules and facts contained in the
AFD metrics it received from the Collectors.

In the current version of the LMA Toolchain, there are three GSE plugins:

	The Service Cluster GSE which receives metrics from the AFD plugins monitoring
the services and emits health status for the clusters of services (nova-api, nova-scheduler and so forth).

	The Node Cluster GSE which receives metrics from the AFD plugins monitoring
the system and emits health status for the clusters of nodes (controllers, computes and so forth).

	The Global Cluster GSE which receives metrics from the two other GSE plugins
and emits health status for the top-level clusters (Nova, MySQL and so forth).

The meaning for each health status is as follow:

	Down: One or several primary functions of a cluster has failed or is failing.
For example, the API service for Nova or Cinder isn’t accessible.

	Critical: One or several primary functions of a
cluster are severely degraded. The quality
of service delivered to the end-user should be severely
impacted.

	Warning: One or several primary functions of the
cluster are slightly degraded. The quality
of service delivered to the end-user should be slightly
impacted.

	Unknown: There is not enough data to infer the actual
health state of the cluster.

	Okay: None of the above was found to be true.

The AFD and GSE metrics are also consumed by other groups
of Heka plugins called the Persisters.

	A Persister for InfluxDB turns the GSE metric
messages into InfluxDB data-points and Grafana annotations. They
are displayed in Grafana dashboards to represent the
health status of the OpenStack services and clusters.

	A Persister for Elasticsearch turns the AFD metrics
messages into AFD events which are indexed in Elasticsearch to
be able to search and display the faults and anomalies that occured
in the OpenStack environment.

	A Persister for Nagios turns the GSE metrics
messages into passive checks that are sent to Nagios which in turn
will send alert notifications when there is a change of state for
the services and clusters being monitored.

The AFD metrics and GSE metrics are new types of metrics introduced
in LMA v 0.8. They contain detailed information about the entities
being monitored.
Please refer to the Metrics section of the Developer Guide [http://fuel-plugin-lma-collector.readthedocs.org/en/latest/appendix_b.html]
for further information about the structure of those messages.

Any backend system that has a Persister plugged
into the Heka pipeline of the Aggregator can consume those metrics.
The idea is to feed those systems with rich operational
insights about how OpenStack is operating at scale.

Alarm Configuration

The LMA Toolchain comes out-of-the-box with predefined alarm and correlation
rules. We have tried to make the alarm rules comprehensive and relevant enough
to cover the most common use cases, but it is possible that your mileage varies
depending on the specifics of your environment and monitoring requirements.
It is obviously possible to modify the alarm rules or even create new ones.
In this case, you will be required to modify the alarm rules configuration
file and reapply the Puppet module that will turn the alarm rules into Lua code
on each of the nodes you want the change to take effect. This procedure is
explained below but first you need to know how the alarm rule structure is
defined.

Alarm Structure

An alarm rule is defined declaratively using the YAML syntax
as shown in the example below:

name: 'fs-warning'
description: 'Filesystem free space is low'
severity: 'warning'
enabled: 'true'
trigger:
 rules:
 - metric: fs_space_percent_free
 fields:
 fs: '*'
 relational_operator: '<'
 threshold: 5
 window: 60
 periods: 0
 function: min

Where

name:

Type: unicode

The name of the alarm definition

description:

Type: unicode

A description of the alarm definition for humans

severity:

Type: Enum(0 (down), 1 (critical) , 2 (warning))

The severity of the alarm

enabled:

Type: Enum(‘true’ | ‘false’)

The alarm is enabled or disabled

relational_operator:

Type: Enum(‘lt’ | ‘<’ | ‘gt’ | ‘>’ | ‘lte’ | ‘<=’ | ‘gte’ | ‘>=’)

The comparison against the alarm threshold

rules

Type: list

List of rules to execute

logical_operator

Type: Enum(‘and’ | ‘&&’ | ‘or’ | ‘||’)

The conjonction relation for the alarm rules.

metric

Type: unicode

The name of the metric

value

Type: unicode

The value of the metric

fields

Type: list

List of field name / value pairs (a.k.a dimensions) used to select
a particular device for the metric such as a network interface name or file
system mount point. If value is specified as an empty string (“”), then the rule
is applied to all the aggregated values for the specified field name. For example
the file system mount point.
If value is specified as the ‘*’ wildcard character,
then the rule is applied to each of the metrics matching the metric name and field name.
For example, the alarm definition sample given above would run the rule
for each of the file system mount points associated with the fs_space_percent_free metric.

window

Type: integer

The in memory time-series analysis window in seconds

periods

Type: integer

The number of prior time-series analysis window to compare the window with (this is

not implemented yet)

function

Type: enum(‘last’ | ‘min’ | ‘max’ | ‘sum’ | ‘count’ | ‘avg’ | ‘median’ | ‘mode’ | ‘roc’ | ‘mww’ | ‘mww_nonparametric’)

Where:

last:

returns the last value of all the values

min:

returns the minimum of all the values

max:

returns the maximum of all the values

sum:

returns the sum of all the values

count:

returns the number of metric observations

avg:

returns the arithmetic mean of all the values

median:

returns the middle value of all the values (not implemented yet)

mode:

returns the value that occurs most often in all the values

(not implemented yet)

roc:

The ‘roc’ function detects a significant rate
of change when comparing current metrics values with historical data.
To achieve this, it computes the average of the values in the current window,
and the average of the values in the window before the current window and
compare the difference against the standard deviation of the
historical window. The function returns true if the difference
exceeds the standard deviation multiplied by the ‘threshold’ value.
This function uses the rate of change algorithm already available in the
anomaly detection module of Heka. It can only be applied on normal
distributions.
With an alarm rule using the ‘roc’ function, the ‘window’ parameter
specifies the duration in seconds of the current window and the ‘periods’
parameter specifies the number of windows used for the historical data.
You need at least one period and so, the ‘periods’ parameter must not be zero.
If you choose a period of ‘p’, the function will compute the rate of
change using an historical data window of (‘p’ * window) seconds.
For example, if you specify in the alarm rule:

window = 60

periods = 3

threshold = 1.5

The function will store in a circular buffer the value of the metrics
received during the last 300 seconds (5 minutes) where:

Current window (CW) = 60 sec

Previous window (PW) = 60 sec

Historical window (HW) = 180 sec

And apply the following formula:

abs(avg(CW) - avg(PW)) > std(HW) * 1.5 ? true : false

mww:

returns the result (true, false) of the Mann-Whitney-Wilcoxon test function

of Heka that can be used only with normal distributions (not implemented yet)

mww-nonparametric:

returns the result (true, false) of the Mann-Whitney-Wilcoxon

test function of Heka that can be used with non-normal distributions (not implemented yet)

diff:

returns the difference between the last value and the first value of all the values

threshold

Type: float

The threshold of the alarm rule

How to modify an alarm?

To modify an alarm, you need to edit the /etc/hiera/override/alarming.yaml
file. This file has three different sections:

	The first section contains a list of alarms.

	The second section defines the mapping between the internal definition of
a cluster and one or several Fuel roles.
The definition of a cluster is abstrat. It can be mapped to any Fuel role(s).
In the example below, we define three clusters for:

	controller,

	compute,

	and storage

	The third section defines how the alarms are assigned to clusters.
In the example below, the controller cluster is assigned to four alarms:

	Two alarms [‘cpu-critical-controller’, ‘cpu-warning-controller’] grouped as system alarms.

	Two alarms [‘fs-critical’, ‘fs-warning’] grouped as fs (file system) alarms.

	Note:

	The alarm groups is a mere implementaton artifact (although
it has some practicall usefulness) that is used to divide the workload
across several Lua plugins. Since the Lua plugins
runtime is sandboxed within Heka, it is preferable to run
smaller sets of alarms in different plugins rather than a large set
of alarms in a single plugin. This is to avoid having plugins shut down
by Heka because they use too much CPU or memory.
Furthermore, the alarm groups are used to identify what we
call a source. A source is defined by a tuple which includes the name of
the cluster and the name of the alarm group.
For example the tuple [‘controller’, ‘system’] identifies a source.
The tuple [‘controller’, ‘fs’] identifies another source.
The interesting thing about the source is that it is used by the
GSE Plugins to find out whether it has received enough data
(from its ‘known’ sources) to issue a health status or not.
If it doesn’t, then the GSE Plugin will issue a GSE Metric with an
Unknown health status when it has reached the end of the
ticker interval period.
By default, the ticker interval for the GSE Plugins is set to
10 seconds. This practically means that every 10 seconds, a GSE Plugin
is compelled to send a GSE Metric regardless of the metrics
it has received from the upstream GSE Plugins and/or AFD Plugins.

Here is an example of the definition of an alarm and how
that alarm is assigned to a cluster:

lma_collector:
 #
 # The alarms list
 #
 alarms:
 - name: 'cpu-critical-controller'
 description: 'CPU critical on controller'
 severity: 'critical'
 enabled: 'true'
 trigger:
 logical_operator: 'or'
 rules:
 - metric: cpu_idle
 relational_operator: '<='
 threshold: 5
 window: 120
 periods: 0
 function: avg
 - metric: cpu_wait
 relational_operator: '>='
 threshold: 35
 window: 120
 periods: 0
 function: avg

 [Skip....]

 #
 # Cluster name to roles mapping section
 #
 node_cluster_roles:
 controller: ['primary-controller', 'controller']
 compute: ['compute']
 storage: ['cinder', 'ceph-osd']

 #
 # Cluster name to alarms assignement section
 #
 node_cluster_alarms:
 controller:
 system: ['cpu-critical-controller', 'cpu-warning-controller']
 fs: ['fs-critical', 'fs-warning']

In this example, you can see that the alarm cpu-critical-controller is
assigned to the controller cluster (or in other words) to the nodes assigned
to the primary-controller or controller roles.

This alarm tells the system that any node associated with the controller
cluster is claimed to be critical (severity: ‘critical’) if any of the rules in
the alarm evaluates to true.

The first rule says that the alarm evaluates to true if
the metric cpu_idle has been in average (function: avg) below or equal
(relational_operator: <=) to 5 (this metric is expressed in percentage) for the
last 5 minutes (window: 120)

Or (logical_operator: ‘or’)

if the metric cpu_wait has been in average (function: avg) superior or equal
(relational_operator: >=) to 35 (this metric is expressed in percentage) for the
last 5 minutes (window: 120)

Once you have edited and saved the /etc/hiera/override/alarming.yaml file, you
need to re-apply the Puppet module:

puppet apply --modulepath=/etc/fuel/plugins/lma_collector-0.9/puppet/modules/ \
/etc/fuel/plugins/lma_collector-0.9/puppet/manifests/configure_afd_filters.pp

This will restart the LMA Collector with your change.

GSE configuration

The LMA toolchain comes with a predefined configuration for the GSE plugins. As
for the alarms, it is possible to modify this configuration.

The GSE plugins are defined declaratively in the
/etc/hiera/override/gse_filters.yaml file. By default, that file specifies
three kinds of GSE plugins:

	gse_cluster_service for the Service Cluster GSE which evaluates the status
of the service clusters.

	gse_cluster_node for the Node Cluster GSE which evaluates the status of the
node clusters.

	gse_cluster_global for the Global Cluster GSE which evaluates the status
of the global clusters.

The structure of a GSE plugin declarative definition is described below:

gse_cluster_service:
 input_message_types:
 - afd_service_metric
 aggregator_flag: true
 cluster_field: service
 member_field: source
 output_message_type: gse_service_cluster_metric
 output_metric_name: cluster_service_status
 interval: 10
 warm_up_period: 20
 clusters:
 nova-api:
 policy: highest_severity
 group_by: member
 members:
 - backends
 - endpoint
 - http_errors
 [...]

Where

input_message_types

Type: list

The type(s) of AFD metric messages consumed by the GSE plugin.

aggregator_flag

Type: boolean

Whether or not the input messages are received from the upstream collectors.
This is true for the Service and Node Cluster plugins and false for the
Global Cluster plugin.

cluster_field

Type: unicode

The field in the input message used by the GSE plugin to associate the
AFD/GSE metrics to the clusters.

member_field

Type: unicode

The field in the input message used by the GSE plugin to identify the
cluster members.

output_message_type

Type: unicode

The type of metric messages emitted by the GSE plugin.

output_metric_name

Type: unicode

The Fields[name] value of the metric messages that the GSE plugin emits.

interval

Type: integer

The interval (in seconds) at which the GSE plugin emits its metric messages.

warm_up_period

Type: integer

The number of seconds after a (re)start that the GSE plugin will wait
before emitting its metric messages.

clusters

Type: list

The list of clusters that the plugin manages. See
Cluster definition for details.

Cluster definition

The GSE clusters are defined as shown in the example below:

gse_cluster_service:
 [...]

 clusters:
 nova-api:
 members:
 - backends
 - endpoint
 - http_errors
 group_by: member
 policy: highest_severity

 [...]

Where

members

Type: list

The list of cluster members.
The AFD/GSE messages are associated to the cluster when the cluster_field
value is equal to the cluster name and the member_field value is in this
list.

group_by

Type: Enum(member, hostname)

This parameter defines how the incoming AFD metrics are aggregated.

member:

aggregation by member, irrespective of the host that emitted the AFD metric.

This setting is typically used for AFD metrics that are not host-centric.

hostname:

aggregation by hostname then by member.

This setting is typically used for AFD metrics that are host-centric such as

those working on filesystem or CPU usage metrics.

policy:

Type: unicode

The policy to use for computing the cluster status. See Cluster policies
for details.

If we look more closely at the example above, it defines that the Service
Cluster GSE plugin will emit a gse_service_cluster_metric message every 10
seconds that will report the current status of the nova-api cluster. This
status is computed using the afd_service_metric metrics for which
Fields[service] is ‘nova-api’ and Fields[source] is one of ‘backends’,
‘endpoint’ or ‘http_errors’. The ‘nova-api’ cluster’s status is computed using
the ‘highest_severity’ policy which means that it will be equal to the ‘worst’
status across all members.

Cluster policies

The correlation logic implemented by the GSE plugins is policy-based.
The cluster policies define how the GSE plugins infer the health status of a
cluster.

By default, two policies are defined:

	highest_severity, it defines that the cluster’s status depends on the
member with the highest severity, typically used for a cluster of services.

	majority_of_members, it defines that the cluster is healthy as long as
(N+1)/2 members of the cluster are healthy. This is typically used for
clusters managed by Pacemaker.

The GSE policies are defined declaratively in the /etc/hiera/override/gse_filters.yaml
file at the gse_policies entry.

A policy consists of a list of rules which are evaluated against the
current status of the cluster’s members. When one of the rules matches, the
cluster’s status gets the value associated with the rule and the evaluation
stops here. The last rule of the list is usually a catch-all rule that
defines the default status in case none of the previous rules could be matched.

A policy rule is defined as shown in the example below:

The following rule definition reads as: "the cluster's status is critical
if more than 50% of its members are either down or criticial"
- status: critical
 trigger:
 logical_operator: or
 rules:
 - function: percent
 arguments: [down, critical]
 relational_operator: '>'
 threshold: 50

Where

status:

Type: Enum(down, critical, warning, okay, unknown)

The cluster’s status if the condition is met

logical_operator

Type: Enum(‘and’ | ‘&&’ | ‘or’ | ‘||’)

The conjonction relation for the condition rules

rules

Type: list

List of condition rules to execute

function

Type: enum(‘count’ | ‘percent’)

Where:

count:

returns the number of members that match the passed value(s).

percent:

returns the percentage of members that match the passed value(s).

arguments:

Type: list of status values

List of status values passed to the function

relational_operator:

Type: Enum(‘lt’ | ‘<’ | ‘gt’ | ‘>’ | ‘lte’ | ‘<=’ | ‘gte’ | ‘>=’)

The comparison against the threshold

threshold

Type: float

The threshold value

Lets now take a more detailed look at the policy called highest_severity:

gse_policies:

 highest_severity:
 - status: down
 trigger:
 logical_operator: or
 rules:
 - function: count
 arguments: [down]
 relational_operator: '>'
 threshold: 0
 - status: critical
 trigger:
 logical_operator: or
 rules:
 - function: count
 arguments: [critical]
 relational_operator: '>'
 threshold: 0
 - status: warning
 trigger:
 logical_operator: or
 rules:
 - function: count
 arguments: [warning]
 relational_operator: '>'
 threshold: 0
 - status: okay
 trigger:
 logical_operator: or
 rules:
 - function: count
 arguments: [okay]
 relational_operator: '>'
 threshold: 0
 - status: unknown

The policy definition reads as:

	The status of the cluster is Down if the status of at least one cluster’s member is Down.

	Otherwise the status of the cluster is Critical if the status of at least one cluster’s member is Critical.

	Otherwise the status of the cluster is Warning if the status of at least one cluster’s member is Warning.

	Otherwise the status of the cluster is Okay if the status of at least one cluster’s entity is Okay.

	Otherwise the status of the cluster is Unknown.

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Licenses

Third Party Components

	Name
	Project Web Site
	License

	Heka
	https://github.com/mozilla-services/heka
	Mozilla Public License

	collectd
	http://collectd.org/
	GPLv2

	Collectd::CPU
	http://collectd.org/
	GPLv2

	Collectd::Disk
	http://collectd.org/
	GPLv2

	Collectd::Df
	http://collectd.org/
	GPLv2

	Collectd::Interface
	http://collectd.org/
	GPLv2

	Collectd::Load
	http://collectd.org/
	GPLv2

	Collectd::Memory
	http://collectd.org/
	GPLv2

	Collectd::Processes
	http://collectd.org/
	GPLv2 or later

	Collectd::Swap
	http://collectd.org/
	GPLv2

	Collectd::User
	http://collectd.org/
	GPLv2

	Collectd::LogFile
	http://collectd.org/
	GPLv2

	Collectd::User
	http://collectd.org/
	GPLv2

	Collectd::WriteHttp
	http://collectd.org/
	GPLv2

	Collectd::MySQL
	http://collectd.org/
	GPLv2

	Collectd::DBI
	http://collectd.org/
	GPLv2

	Collectd::Apache
	http://collectd.org/
	GPLv2

	Collectd::Python
	http://collectd.org/
	MIT

	Collectd::Python::RabbitMQ
	http://collectd.org/
	Apache v2

	Collectd::Python::HAProxy
	http://collectd.org/
	Permissive

Puppet modules

	Name
	Project Web Site
	License

	puppet-collectd
	https://github.com/puppet-community/puppet-collectd
	Apache v2

	puppetlabs-apache
	https://github.com/puppetlabs/puppetlabs-apache
	Apache v2

	puppetlabs-stdlib
	https://github.com/puppetlabs/puppetlabs-stdlib
	Apache v2

	puppetlabs-inifile
	https://github.com/puppetlabs/puppetlabs-inifile
	Apache v2

	puppetlabs-concat
	https://github.com/puppetlabs/puppetlabs-concat
	Apache v2

	puppetlabs-firewall
	https://github.com/puppetlabs/puppetlabs-firewall
	Apache v2

	openstack-cinder
	https://github.com/openstack/puppet-cinder
	Apache v2

	openstack-glance
	https://github.com/openstack/puppet-glance
	Apache v2

	openstack-heat
	https://github.com/openstack/puppet-heat
	Apache v2

	openstack-keystone
	https://github.com/openstack/puppet-keystone
	Apache v2

	openstack-neutron
	https://github.com/openstack/puppet-neutron
	Apache v2

	openstack-nova
	https://github.com/openstack/puppet-nova
	Apache v2

	openstack-openstacklib
	https://github.com/openstack/puppet-openstacklib
	Apache v2

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Appendix A: References

	The LMA Collector plugin [https://github.com/openstack/fuel-plugin-lma-collector] project at GitHub.

	The Elasticsearch-Kibana plugin [https://github.com/openstack/fuel-plugin-elasticsearch-kibana] project at GitHub.

	The InfluxDB-Grafana plugin [https://github.com/openstack/fuel-plugin-influxdb-grafana] project at GitHub.

	The LMA Infrastructure Alerting plugin [https://github.com/openstack/fuel-plugin-lma-Infrastructure-alerting] project at GitHub.

	The official Kibana documentation [https://www.elastic.co/guide/en/kibana/3.0/index.html].

	The official Elasticsearch documentation [https://www.elastic.co/guide/en/elasticsearch/reference/1.4/index.html].

	The official InfluxDB documentation [https://docs.influxdata.com/influxdb/v0.10/].

	The official Grafana documentation [http://docs.grafana.org/v2.6/].

	The official Nagios documentation [https://www.nagios.org/documentation/].

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Appendix B: List of metrics

This is the list of metrics that are emitted by the LMA collector service. They
are listed by category then by metric name.

System

CPU

Metrics have a cpu_number field that contains the CPU number to which the metric applies.

	cpu_idle, percentage of CPU time spent in the idle task.

	cpu_interrupt, percentage of CPU time spent servicing interrupts.

	cpu_nice, percentage of CPU time spent in user mode with low priority (nice).

	cpu_softirq, percentage of CPU time spent servicing soft interrupts.

	cpu_steal, percentage of CPU time spent in other operating systems.

	cpu_system, percentage of CPU time spent in system mode.

	cpu_user, percentage of CPU time spent in user mode.

	cpu_wait, percentage of CPU time spent waiting for I/O operations to complete.

Disk

Metrics have a device field that contains the disk device number the metric applies to (eg ‘sda’, ‘sdb’ and so on).

	disk_merged_read, the number of read operations per second that could be merged with already queued operations.

	disk_merged_write, the number of write operations per second that could be merged with already queued operations.

	disk_octets_read, the number of octets (bytes) read per second.

	disk_octets_write, the number of octets (bytes) written per second.

	disk_ops_read, the number of read operations per second.

	disk_ops_write, the number of write operations per second.

	disk_time_read, the average time for a read operation to complete in the last interval.

	disk_time_write, the average time for a write operation to complete in the last interval.

File system

Metrics have a fs field that contains the partition’s mount point to which the metric applies (eg ‘/’, ‘/var/lib’ and so on).

	fs_inodes_free, the number of free inodes on the file system.

	fs_inodes_reserved, the number of reserved inodes.

	fs_inodes_used, the number of used inodes.

	fs_space_free, the number of free bytes.

	fs_space_reserved, the number of reserved bytes.

	fs_space_used, the number of used bytes.

	fs_inodes_percent_free, the percentage of free inodes on the file system.

	fs_inodes_percent_reserved, the percentage of reserved inodes.

	fs_inodes_percent_used, the percentage of used inodes.

	fs_space_percent_free, the percentage of free bytes.

	fs_space_percent_reserved, the percentage of reserved bytes.

	fs_space_percent_used, the percentage of used bytes.

System load

	load_longterm, the system load average over the last 15 minutes.

	load_midterm, the system load average over the last 5 minutes.

	load_shortterm, the system load averge over the last minute.

Memory

	memory_buffered, the amount of memory (in bytes) which is buffered.

	memory_cached, the amount of memory (in bytes) which is cached.

	memory_free, the amount of memory (in bytes) which is free.

	memory_used, the amount of memory (in bytes) which is used.

Network

Metrics have a interface field that contains the interface name the metric applies to (eg ‘eth0’, ‘eth1’ and so on).

	if_errors_rx, the number of errors per second detected when receiving from the interface.

	if_errors_tx, the number of errors per second detected when transmitting from the interface.

	if_octets_rx, the number of octets (bytes) received per second by the interface.

	if_octets_tx, the number of octets (bytes) transmitted per second by the interface.

	if_packets_rx, the number of packets received per second by the interface.

	if_packets_tx, the number of packets transmitted per second by the interface.

Processes

	processes_fork_rate, the number of processes forked per second.

	processes_count, the number of processes in a given state. The metric has
a state field (one of ‘blocked’, ‘paging’, ‘running’, ‘sleeping’, ‘stopped’
or ‘zombies’).

Swap

	swap_cached, the amount of cached memory (in bytes) which is in the swap.

	swap_free, the amount of free memory (in bytes) which is in the swap.

	swap_used, the amount of used memory (in bytes) which is in the swap.

	swap_io_in, the number of swap pages written per second.

	swap_io_out, the number of swap pages read per second.

Users

	logged_users, the number of users currently logged-in.

Apache

	apache_bytes, the number of bytes per second transmitted by the server.

	apache_requests, the number of requests processed per second.

	apache_connections, the current number of active connections.

	apache_idle_workers, the current number of idle workers.

	apache_workers_closing, the number of workers in closing state.

	apache_workers_dnslookup, the number of workers in DNS lookup state.

	apache_workers_finishing, the number of workers in finishing state.

	apache_workers_idle_cleanup, the number of workers in idle cleanup state.

	apache_workers_keepalive, the number of workers in keepalive state.

	apache_workers_logging, the number of workers in logging state.

	apache_workers_open, the number of workers in open state.

	apache_workers_reading, the number of workers in reading state.

	apache_workers_sending, the number of workers in sending state.

	apache_workers_starting, the number of workers in starting state.

	apache_workers_waiting, the number of workers in waiting state.

MySQL

Commands

mysql_commands, the number of times per second a given statement has been
executed. The metric has a command field that contains the statement to
which it applies. The values can be:

	change_db for the USE statement.

	commit for the COMMIT statement.

	flush for the FLUSH statement.

	insert for the INSERT statement.

	rollback for the ROLLBACK statement.

	select for the SELECT statement.

	set_option for the SET statement.

	show_collations for the SHOW COLLATION statement.

	show_databases for the SHOW DATABASES statement.

	show_fields for the SHOW FIELDS statement.

	show_master_status for the SHOW MASTER STATUS statement.

	show_status for the SHOW STATUS statement.

	show_tables for the SHOW TABLES statement.

	show_variables for the SHOW VARIABLES statement.

	show_warnings for the SHOW WARNINGS statement.

	update for the UPDATE statement.

Handlers

mysql_handler, the number of times per second a given handler has been
executed. The metric has a handler field that contains the handler
it applies to. The values can be:

	commit for the internal COMMIT statements.

	delete for the internal DELETE statements.

	external_lock for the external locks.

	read_first for the requests that read the first entry in an index.

	read_key for the requests that read a row based on a key.

	read_next for the requests that read the next row in key order.

	read_prev for the requests that read the previous row in key order.

	read_rnd for the requests that read a row based on a fixed position.

	read_rnd_next for the requests that read the next row in the data file.

	rollback the requests that perform rollback operation.

	update the requests that update a row in a table.

	write the requests that insert a row in a table.

Locks

	mysql_locks_immediate, the number of times per second the requests for table locks could be granted immediately.

	mysql_locks_waited, the number of times per second the requests for table locks had to wait.

Network

	mysql_octets_rx, the number of bytes received per second by the server.

	mysql_octets_tx, the number of bytes sent per second by the server.

Threads

	mysql_threads_cached, the number of threads in the thread cache.

	mysql_threads_connected, the number of currently open connections.

	mysql_threads_running, the number of threads that are not sleeping.

	mysql_threads_created, the number of threads created per second to handle connections.

Cluster

These metrics are collected with statement ‘SHOW STATUS’. see Percona documentation [http://www.percona.com/doc/percona-xtradb-cluster/5.6/wsrep-status-index.html]
for further details.

	mysql_cluster_size, current number of nodes in the cluster.

	mysql_cluster_status, 1 when the node is ‘Primary’, 2 if ‘Non-Primary’ and 3 if ‘Disconnected’.

	mysql_cluster_connected, 1 when the node is connected to the cluster, if not 0.

	mysql_cluster_ready, 1 when the node is ready to accept queries, if not 0.

	mysql_cluster_local_commits, number of writesets commited on the node.

	mysql_cluster_received_bytes, total size in bytes of writesets received from other nodes.

	mysql_cluster_received, total number of writesets received from other nodes.

	mysql_cluster_replicated_bytes total size in bytes of writesets sent to other nodes.

	mysql_cluster_replicated, total number of writesets sent to other nodes.

	mysql_cluster_local_cert_failures, number of writesets that failed the certification test.

	mysql_cluster_local_send_queue, the number of writesets waiting to be sent.

	mysql_cluster_local_recv_queue, the number of writesets waiting to be applied.

Slow Queries

This metric is collected with statement ‘SHOW STATUS where Variable_name = ‘Slow_queries’.

	mysql_slow_queries, number of queries that have taken more than X seconds,
depending of the MySQL configuration parameter ‘long_query_time’ (10s per default)

RabbitMQ

Cluster

	rabbitmq_connections, total number of connections.

	rabbitmq_consumers, total number of consumers.

	rabbitmq_exchanges, total number of exchanges.

	rabbitmq_memory, bytes of memory consumed by the Erlang process associated with all queues, including stack, heap and internal structures.

	rabbitmq_used_memory, bytes of memory used by the whole RabbitMQ process.

	rabbitmq_remaining_memory, the difference between rabbitmq_vm_memory_limit and rabbitmq_used_memory.

	rabbitmq_messages, total number of messages which are ready to be consumed or not yet acknowledged.

	rabbitmq_total_nodes, total number of nodes in the cluster.

	rabbitmq_running_nodes, total number of running nodes in the cluster.

	rabbitmq_queues, total number of queues.

	rabbitmq_unmirrored_queues, total number of queues that are not mirrored.

	rabbitmq_vm_memory_limit, the maximum amount of memory allocated for RabbitMQ. When rabbitmq_used_memory uses more than this value, all producers are blocked.

	rabbitmq_disk_free_limit, the minimum amount of free disk for RabbitMQ. When rabbitmq_disk_free drops below this value, all producers are blocked.

	rabbitmq_disk_free, the disk free space.

	rabbitmq_remaining_disk, the difference between rabbitmq_disk_free and rabbitmq_disk_free_limit.

Queues

All metrics have a queue field which contains the name of the RabbitMQ queue.

	rabbitmq_queue_consumers, number of consumers for a given queue.

	rabbitmq_queue_memory, bytes of memory consumed by the Erlang process associated with the queue, including stack, heap and internal structures.

	rabbitmq_queue_messages, number of messages which are ready to be consumed or not yet acknowledged for the given queue.

HAProxy

frontend and backend field values can be:

	cinder-api

	glance-api

	glance-registry-api

	heat-api

	heat-cfn-api

	heat-cloudwatch-api

	horizon-web (when Horizon is deployed without TLS)

	horizon-https (when Horizon is deployed with TLS)

	keystone-public-api

	keystone-admin-api

	mysqld-tcp

	murano-api

	neutron-api

	nova-api

	nova-ec2-api

	nova-metadata-api

	nova-novncproxy-websocket

	sahara-api

	swift-api

Server

	haproxy_connections, the number of current connections.

	haproxy_ssl_connections, the number of current SSL connections.

	haproxy_pipes_free, the number of free pipes.

	haproxy_pipes_used, the number of used pipes.

	haproxy_run_queue, the number of connections waiting in the queue.

	haproxy_tasks, the number of tasks.

	haproxy_uptime, the HAProxy server uptime in seconds.

Frontends

	haproxy_frontend_bytes_in, the total number of bytes received by all frontends.

	haproxy_frontend_bytes_out, the total number of bytes transmitted by all frontends.

	haproxy_frontend_session_current, the total number of current sessions for all frontends.

The following metrics have a frontend field that contains the name of the frontend server.

	haproxy_frontend_bytes_in, the number of bytes received by the frontend.

	haproxy_frontend_bytes_out, the number of bytes transmitted by the frontend.

	haproxy_frontend_denied_requests, the number of denied requests.

	haproxy_frontend_denied_responses, the number of denied responses.

	haproxy_frontend_error_requests, the number of error requests.

	haproxy_frontend_response_1xx, the number of HTTP responses with 1xx code.

	haproxy_frontend_response_2xx, the number of HTTP responses with 2xx code.

	haproxy_frontend_response_3xx, the number of HTTP responses with 3xx code.

	haproxy_frontend_response_4xx, the number of HTTP responses with 4xx code.

	haproxy_frontend_response_5xx, the number of HTTP responses with 5xx code.

	haproxy_frontend_response_other, the number of HTTP responses with other code.

	haproxy_frontend_session_current, the number of current sessions.

	haproxy_frontend_session_total, the cumulative number of sessions.

Backends

	haproxy_backend_bytes_in, the total number of bytes received by all backends.

	haproxy_backend_bytes_out, the total number of bytes transmitted by all backends.

	haproxy_backend_queue_current, the total number of requests in queue for all backends.

	haproxy_backend_session_current, the total number of current sessions for all backends.

	haproxy_backend_error_responses, the total number of error responses for all backends.

The following metrics have a backend field that contains the name of the backend server.

	haproxy_backend_bytes_in, the number of bytes received by the backend.

	haproxy_backend_bytes_out, the number of bytes transmitted by the backend.

	haproxy_backend_denied_requests, the number of denied requests.

	haproxy_backend_denied_responses, the number of denied responses.

	haproxy_backend_downtime, the total downtime in second.

	haproxy_backend_status, the global backend status where values 0 and 1 represent respectively DOWN (all backends are down) and UP (at least one backend is up).

	haproxy_backend_error_connection, the number of error connections.

	haproxy_backend_error_responses, the number of error responses.

	haproxy_backend_queue_current, the number of requests in queue.

	haproxy_backend_redistributed, the number of times a request was redispatched to another server.

	haproxy_backend_response_1xx, the number of HTTP responses with 1xx code.

	haproxy_backend_response_2xx, the number of HTTP responses with 2xx code.

	haproxy_backend_response_3xx, the number of HTTP responses with 3xx code.

	haproxy_backend_response_4xx, the number of HTTP responses with 4xx code.

	haproxy_backend_response_5xx, the number of HTTP responses with 5xx code.

	haproxy_backend_response_other, the number of HTTP responses with other code.

	haproxy_backend_retries, the number of times a connection to a server was retried.

	haproxy_backend_servers, the count of servers grouped by state. This metric has an additional state field that contains the state of the backends (either ‘down’ or ‘up’).

	haproxy_backend_session_current, the number of current sessions.

	haproxy_backend_session_total, the cumulative number of sessions.

Memcached

	memcached_command_flush, cumulative number of flush reqs.

	memcached_command_get, cumulative number of retrieval reqs.

	memcached_command_set, cumulative number of storage reqs.

	memcached_command_touch, cumulative number of touch reqs.

	memcached_connections_current, number of open connections.

	memcached_items_current, current number of items stored.

	memcached_octets_rx, total number of bytes read by this server from network.

	memcached_octets_tx, total number of bytes sent by this server to network.

	memcached_ops_decr_hits, number of successful decr reqs.

	memcached_ops_decr_misses, number of decr reqs against missing keys.

	memcached_ops_evictions, number of valid items removed from cache to free memory for new items.

	memcached_ops_hits, number of keys that have been requested.

	memcached_ops_incr_hits, number of successful incr reqs.

	memcached_ops_incr_misses, number of successful incr reqs.

	memcached_ops_misses, number of items that have been requested and not found.

	memcached_df_cache_used, current number of bytes used to store items.

	memcached_df_cache_free, current number of free bytes to store items.

	memcached_percent_hitratio, percentage of get command hits (in cache).

See memcached documentation [https://github.com/memcached/memcached/blob/master/doc/protocol.txt#L488] for further details.

Libvirt

Every metric contains an instance_id field which is the UUID of the
instance for the Nova service.

CPU

	virt_cpu_time, the average amount of CPU time (in nanoseconds) allocated
to the virtual instance in a second.

	virt_vcpu_time, the average amount of CPU time (in nanoseconds)
allocated to the virtual CPU in a second. The metric contains a
vcpu_number field which is the virtual CPU number.

Disk

Metrics have a device field that contains the virtual disk device to which
the metric applies (eg ‘vda’, ‘vdb’ and so on).

	virt_disk_octets_read, the number of octets (bytes) read per second.

	virt_disk_octets_write, the number of octets (bytes) written per second.

	virt_disk_ops_read, the number of read operations per second.

	virt_disk_ops_write, the number of write operations per second.

Memory

	virt_memory_total, the total amount of memory (in bytes) allocated to the
virtual instance.

Network

Metrics have an interface field that contains the interface name to which
the metric applies (eg ‘tap0dc043a6-dd’, ‘tap769b123a-2e’ and so on).

	virt_if_dropped_rx, the number of dropped packets per second when
receiving from the interface.

	virt_if_dropped_tx, the number of dropped packets per second when
transmitting from the interface.

	virt_if_errors_rx, the number of errors per second detected when
receiving from the interface.

	virt_if_errors_tx, the number of errors per second detected when
transmitting from the interface.

	virt_if_octets_rx, the number of octets (bytes) received per second by
the interface.

	virt_if_octets_tx, the number of octets (bytes) transmitted per second by
the interface.

	virt_if_packets_rx, the number of packets received per second by the
interface.

	virt_if_packets_tx, the number of packets transmitted per second by the
interface.

OpenStack

Service checks

	
	openstack_check_api, the service’s API status, 1 if it is responsive, if not 0.

	The metric contains a service field that identifies the OpenStack service being checked.

<service> is one of the following values with their respective resource checks:

	‘nova-api’: ‘/’

	‘cinder-api’: ‘/’

	‘cinder-v2-api’: ‘/’

	‘glance-api’: ‘/’

	‘heat-api’: ‘/’

	‘heat-cfn-api’: ‘/’

	‘keystone-public-api’: ‘/’

	‘neutron-api’: ‘/’

	‘ceilometer-api’: ‘/v2/capabilities’

	‘swift-api’: ‘/healthcheck’

	‘swift-s3-api’: ‘/healthcheck’

Note

All checks are performed without authentication except for Ceilometer.

Compute

These metrics are emitted per compute node.

	openstack_nova_instance_creation_time, the time (in seconds) it took to launch a new instance.

	openstack_nova_instance_state, the number of instances which entered a given state (the value is always 1).
The metric contains a state field.

	openstack_nova_free_disk, the disk space (in GB) available for new instances.

	openstack_nova_used_disk, the disk space (in GB) used by the instances.

	openstack_nova_free_ram, the memory (in MB) available for new instances.

	openstack_nova_used_ram, the memory (in MB) used by the instances.

	openstack_nova_free_vcpus, the number of virtual CPU available for new instances.

	openstack_nova_used_vcpus, the number of virtual CPU used by the instances.

	openstack_nova_running_instances, the number of running instances.

	openstack_nova_running_tasks, the number of tasks currently executed.

These metrics are retrieved from the Nova API and represent the aggregated
values across all compute nodes.

	openstack_nova_total_free_disk, the total amount of disk space (in GB) available for new instances.

	openstack_nova_total_used_disk, the total amount of disk space (in GB) used by the instances.

	openstack_nova_total_free_ram, the total amount of memory (in MB) available for new instances.

	openstack_nova_total_used_ram, the total amount of memory (in MB) used by the instances.

	openstack_nova_total_free_vcpus, the total number of virtual CPU available for new instances.

	openstack_nova_total_used_vcpus, the total number of virtual CPU used by the instances.

	openstack_nova_total_running_instances, the total number of running instances.

	openstack_nova_total_running_tasks, the total number of tasks currently executed.

These metrics are retrieved from the Nova API.

	openstack_nova_instances, the total count of instances in a given state.
The metric contains a state field which is one of ‘active’, ‘deleted’,
‘error’, ‘paused’, ‘resumed’, ‘rescued’, ‘resized’, ‘shelved_offloaded’ or
‘suspended’.

These metrics are retrieved from the Nova database.

	openstack_nova_services, the total count of Nova
services by state. The metric contains a service field (one of ‘compute’,
‘conductor’, ‘scheduler’, ‘cert’ or ‘consoleauth’) and a state field (one
of ‘up’, ‘down’ or ‘disabled’).

	openstack_nova_service, the Nova service state (either 0 for ‘up’, 1 for ‘down’ or 2 for ‘disabled’).
The metric contains a service field (one of ‘compute’, ‘conductor’, ‘scheduler’, ‘cert’
or ‘consoleauth’) and a state field (one of ‘up’, ‘down’ or ‘disabled’).

Identity

These metrics are retrieved from the Keystone API.

	openstack_keystone_roles, the total number of roles.

	openstack_keystone_tenants, the number of tenants by state. The metric
contains a state field (either ‘enabled’ or ‘disabled’).

	openstack_keystone_users, the number of users by state. The metric
contains a state field (either ‘enabled’ or ‘disabled’).

Volume

These metrics are emitted per volume node.

	openstack_cinder_volume_creation_time, the time (in seconds) it took to create a new volume.

Note

When using Ceph as the backend storage for volumes, the hostname value is always set to rbd.

These metrics are retrieved from the Cinder API.

	openstack_cinder_volumes, the number of volumes by state. The metric contains a state field.

	openstack_cinder_snapshots, the number of snapshots by state. The metric contains a state field.

	openstack_cinder_volumes_size, the total size (in bytes) of volumes by state. The metric contains a state field.

	openstack_cinder_snapshots_size, the total size (in bytes) of snapshots by state. The metric contains a state field.

state is one of ‘available’, ‘creating’, ‘attaching’, ‘in-use’, ‘deleting’, ‘backing-up’, ‘restoring-backup’, ‘error’, ‘error_deleting’, ‘error_restoring’, ‘error_extending’.

These metrics are retrieved from the Cinder database.

	openstack_cinder_services, the total count of Cinder services by state.
The metric contains a service field (one of ‘volume’, ‘backup’,
‘scheduler’) and a state field (one of ‘up’, ‘down’ or ‘disabled’).

	openstack_cinder_service, the Cinder service state (either 0 for ‘up’, 1 for ‘down’ or 2 for ‘disabled’).
The metric contains a service field (one of ‘volume’, ‘backup’, ‘scheduler’),
and a state field (one of ‘up’, ‘down’ or ‘disabled’).

Image

These metrics are retrieved from the Glance API.

	openstack_glance_images, the number of images by state and visibility.
The metric contains state and visibility field.

	openstack_glance_snapshots, the number of snapshot images by state and
visibility. The metric contains state and visibility field.

	openstack_glance_images_size, the total size (in bytes) of images by
state and visibility. The metric contains state and visibility field.

	openstack_glance_snapshots_size, the total size (in bytes) of snapshots
by state and visibility. The metric contains state and visibility
field.

state is one of ‘queued’, ‘saving’, ‘active’, ‘killed’, ‘deleted’,
‘pending_delete’. visibility is either ‘public’ or ‘private’.

Network

These metrics are retrieved from the Neutron API.

	openstack_neutron_networks, the number of virtual networks by state. The metric contains a state field.

	openstack_neutron_subnets, the number of virtual subnets.

	openstack_neutron_ports, the number of virtual ports by owner and state. The metric contains owner and state fields.

	openstack_neutron_routers, the number of virtual routers by state. The metric contains a state field.

	openstack_neutron_floatingips, the total number of floating IP addresses.

<state> is one of ‘active’, ‘build’, ‘down’ or ‘error’.

<owner> is one of ‘compute’, ‘dhcp’, ‘floatingip’, ‘floatingip_agent_gateway’, ‘router_interface’, ‘router_gateway’, ‘router_ha_interface’, ‘router_interface_distributed’ or ‘router_centralized_snat’.

These metrics are retrieved from the Neutron database.

Note

These metrics are not collected when the Contrail plugin is deployed.

	openstack_neutron_agents, the total number of Neutron agents by service
and state. The metric contains service (one of ‘dhcp’, ‘l3’, ‘metadata’
or ‘openvswitch’) and state (one of ‘up’, ‘down’ or ‘disabled’) fields.

	openstack_neutron_agent, the Neutron agent state (either 0 for ‘up’, 1 for ‘down’ or 2 for ‘disabled’).
The metric contains a service field (one of ‘dhcp’, ‘l3’, ‘metadata’ or ‘openvswitch’),
and a state field (one of ‘up’, ‘down’ or ‘disabled’).

API response times

	openstack_<service>_http_responses, the time (in second) it took to serve the HTTP request. The metric contains http_method (eg ‘GET’, ‘POST’, and so forth) and http_status (eg ‘200’, ‘404’, and so forth) fields.

<service> is one of ‘cinder’, ‘glance’, ‘heat’ ‘keystone’, ‘neutron’ or ‘nova’.

Logs

	log_messages, the number of log messages per second for the given service and severity level. The metric contains service and severity (one of ‘debug’, ‘info’, ...) fields.

Ceph

All Ceph metrics have a cluster field containing the name of the Ceph cluster
(ceph by default).

See cluster monitoring [http://docs.ceph.com/docs/master/rados/operations/monitoring/] and RADOS monitoring [http://docs.ceph.com/docs/master/rados/operations/monitoring-osd-pg/] for further details.

Cluster

	ceph_health, the health status of the entire cluster where values 1, 2
, 3 represent respectively OK, WARNING and ERROR.

	ceph_monitor_count, number of ceph-mon processes.

	ceph_quorum_count, number of ceph-mon processes participating in the
quorum.

Pools

	ceph_pool_total_bytes, total number of bytes for all pools.

	ceph_pool_total_used_bytes, total used size in bytes by all pools.

	ceph_pool_total_avail_bytes, total available size in bytes for all pools.

	ceph_pool_total_number, total number of pools.

The folllowing metrics have a pool field that contains the name of the Ceph pool.

	ceph_pool_bytes_used, amount of data in bytes used by the pool.

	ceph_pool_max_avail, available size in bytes for the pool.

	ceph_pool_objects, number of objects in the pool.

	ceph_pool_read_bytes_sec, number of bytes read by second for the pool.

	ceph_pool_write_bytes_sec, number of bytes written by second for the pool.

	ceph_pool_op_per_sec, number of operations per second for the pool.

	ceph_pool_size, number of data replications for the pool.

	ceph_pool_pg_num, number of placement groups for the pool.

Placement Groups

	ceph_pg_total, total number of placement groups.

	ceph_pg_bytes_avail, available size in bytes.

	ceph_pg_bytes_total, cluster total size in bytes.

	ceph_pg_bytes_used, data stored size in bytes.

	ceph_pg_data_bytes, stored data size in bytes before it is replicated, cloned
or snapshotted.

	ceph_pg_state, number of placement groups in a given state. The metric
contains a state field whose value is <state> is a combination
separated by + of 2 or more states of this list: creating,
active, clean, down, replay, splitting, scrubbing,
degraded, inconsistent, peering, repair, recovering,
recovery_wait, backfill, backfill-wait, backfill_toofull,
incomplete, stale, remapped.

OSD Daemons

	ceph_osd_up, number of OSD daemons UP.

	ceph_osd_down, number of OSD daemons DOWN.

	ceph_osd_in, number of OSD daemons IN.

	ceph_osd_out, number of OSD daemons OUT.

The following metrics have an osd field that contains the OSD identifier.

	ceph_osd_used, data stored size in bytes for the given OSD.

	ceph_osd_total, total size in bytes for the given OSD.

	ceph_osd_apply_latency, apply latency in ms for the given OSD.

	ceph_osd_commit_latency, commit latency in ms for the given OSD.

OSD Performance

All the following metrics are retrieved per OSD daemon from the corresponding
socket /var/run/ceph/ceph-osd.<ID>.asok by issuing the command perf dump.

All metrics have an osd field that contains the OSD identifier.

Note

These metrics are not collected when a node has both the ceph-osd and controller roles.

See OSD performance counters [http://ceph.com/docs/firefly/dev/perf_counters/] for further details.

	ceph_perf_osd_recovery_ops, number of recovery operations in progress.

	ceph_perf_osd_op_wip, number of replication operations currently being processed (primary).

	ceph_perf_osd_op, number of client operations.

	ceph_perf_osd_op_in_bytes, number of bytes received from clients for write operations.

	ceph_perf_osd_op_out_bytes, number of bytes sent to clients for read operations.

	ceph_perf_osd_op_latency, average latency in ms for client operations (including queue time).

	ceph_perf_osd_op_process_latency, average latency in ms for client operations (excluding queue time).

	ceph_perf_osd_op_r, number of client read operations.

	ceph_perf_osd_op_r_out_bytes, number of bytes sent to clients for read operations.

	ceph_perf_osd_op_r_latency, average latency in ms for read operation (including queue time).

	ceph_perf_osd_op_r_process_latency, average latency in ms for read operation (excluding queue time).

	ceph_perf_osd_op_w, number of client write operations.

	ceph_perf_osd_op_w_in_bytes, number of bytes received from clients for write operations.

	ceph_perf_osd_op_w_rlat, average latency in ms for write operations with readable/applied.

	ceph_perf_osd_op_w_latency, average latency in ms for write operations (including queue time).

	ceph_perf_osd_op_w_process_latency, average latency in ms for write operation (excluding queue time).

	ceph_perf_osd_op_rw, number of client read-modify-write operations.

	ceph_perf_osd_op_rw_in_bytes, number of bytes per second received from clients for read-modify-write operations.

	ceph_perf_osd_op_rw_out_bytes, number of bytes per second sent to clients for read-modify-write operations.

	ceph_perf_osd_op_rw_rlat, average latency in ms for read-modify-write operations with readable/applied.

	ceph_perf_osd_op_rw_latency, average latency in ms for read-modify-write operations (including queue time).

	ceph_perf_osd_op_rw_process_latency, average latency in ms for read-modify-write operations (excluding queue time).

Pacemaker

Resource location

	pacemaker_resource_local_active, 1 when the resource is located on
the host reporting the metric, if not 0. The metric contains a
resource field which is one of ‘vip__public’, ‘vip__management’,
‘vip__vrouter_pub’ or ‘vip__vrouter’.

Clusters

The cluster metrics are emitted by the GSE plugins (See the Alarms Configuration Guide for details).

	cluster_service_status, the status of the service cluster.
The metric contains a cluster_name field that identifies the service cluster.

	cluster_node_status, the status of the node cluster.
The metric contains a cluster_name field that identifies the node cluster.

	cluster_status, the status of the global cluster.
The metric contains a cluster_name field that identifies the global cluster.

The supported values for these metrics are:

	0 for the Okay status.

	1 for the Warning status.

	2 for the Unknown status.

	3 for the Critical status.

	4 for the Down status.

LMA self-monitoring

System

Metrics have a service field with the name of the service it applies to. Values can be: hekad, collectd, influxd, grafana-server or elasticsearch.

	lma_components_count_processes, number of processes currently running.

	lma_components_count_threads, number of threads currently running.

	lma_components_cputime_user, percentage of CPU time spent in user mode by the service.
It can be greater than 100% when the node has more than one CPU.

	lma_components_cputime_syst, percentage of CPU time spent in system mode by the service.
It can be greater than 100% when the node has more than one CPU.

	lma_components_disk_bytes_read, number of bytes read from disk(s) per second.

	lma_components_disk_bytes_write, number of bytes written to disk(s) per second.

	lma_components_disk_ops_read, number of read operations from disk(s) per second.

	lma_components_disk_ops_write, number of write operations to disk(s) per second.

	lma_components_memory_code, physical memory devoted to executable code (bytes).

	lma_components_memory_data, physical memory devoted to other than executable code (bytes).

	lma_components_memory_rss, non-swapped physical memory used (bytes).

	lma_components_memory_vm, virtual memory size (bytes).

	lma_components_pagefaults_minflt, minor page faults per second.

	lma_components_pagefaults_majflt, major page faults per second.

	lma_components_stacksize, absolute value of the start address (the bottom)
of the stack minus the address of the current stack pointer.

Heka pipeline

Metrics have two fields: name that contains the name of the decoder or filter as defined by Heka and type that is either decoder or filter.

Metrics for both types:

	hekad_msg_avg_duration, the average time for processing the message (in nanoseconds).

	hekad_msg_count, the total number of messages processed by the decoder. This will reset to 0 when the process is restarted.

	hekad_memory, the total memory used by the Sandbox (in bytes).

Additional metrics for filter type:

	heakd_timer_event_avg_duration, the average time for executing the timer_event function (in nanoseconds).

	hekad_timer_event_count, the total number of executions of the timer_event function. This will reset to 0 when the process is restarted.

Backend checks

	http_check, the backend’s API status, 1 if it is responsive, if not 0.
The metric contains a service field that identifies the LMA backend service being checked.

<service> is one of the following values (depending of which Fuel plugins are deployed in the environment):

	‘influxdb’

Elasticsearch

The following metrics represent the simple status on the health of the cluster.
See cluster health [https://www.elastic.co/guide/en/elasticsearch/reference/1.7/cluster-health.html] for further details.

	elasticsearch_cluster_health, the health status of the entire cluster
where values 1, 2 , 3 represent respectively green,
yellow and red. The red status may also be reported when the
Elasticsearch API returns an unexpected result (network failure for instance).

	elasticsearch_cluster_active_primary_shards, the number of active primary
shards.

	elasticsearch_cluster_active_shards, the number of active shards.

	elasticsearch_cluster_initializing_shards, the number of initializing
shards.

	elasticsearch_cluster_number_of_nodes, the number of nodes in the cluster.

	elasticsearch_cluster_number_of_pending_tasks, the number of pending tasks.

	elasticsearch_cluster_relocating_shards, the number of relocating shards.

	elasticsearch_cluster_unassigned_shards, the number of unassigned shards.

InfluxDB

The following metrics are extracted from the output of show stats command.
The values are reset to zero when InfluxDB is restarted.

cluster

These metrics are only available if there are more than one node in the cluster.

	influxdb_cluster_write_shard_points_requests, the number of requests for writing a time series points to a shard.

	influxdb_cluster_write_shard_requests, the number of requests for writing to a shard.

httpd

	influxdb_httpd_failed_auths, the number of times failed authentications.

	influxdb_httpd_ping_requests, the number of ping requests.

	influxdb_httpd_write_points_ok, the number of points successfully written.

	influxdb_httpd_query_requests, the number of query requests received.

	influxdb_httpd_query_response_bytes, the number of bytes returned to the client.

	influxdb_httpd_requests, the number of requests received.

	influxdb_httpd_write_requests, the number of write requests received.

	influxdb_httpd_write_request_bytes, the number of bytes received for write requests.

write

	influxdb_write_point_requests, the number of write points requests across all data nodes.

	influxdb_write_local_point_requests, the number of write points requests from the local data node.

	influxdb_write_remote_point_requests, the number of write points requests to remote data nodes.

	influxdb_write_requests, the number of write requests across all data nodes.

	influxdb_write_sub_ok, the number of successful points send to subscriptions.

	influxdb_write_ok, the number of successful writes of consistency level.

runtime

	influxdb_memory_alloc, the number of bytes allocated and not yet freed.

	influxdb_memory_total_alloc, the number of bytes allocated (even if freed).

	influxdb_memory_system, the number of bytes obtained from the system.

	influxdb_memory_lookups, the number of pointer lookups.

	influxdb_memory_mallocs, the number of malloc operations.

	influxdb_memory_frees, the number of free operations.

	influxdb_heap_idle, the number of bytes in idle spans.

	influxdb_heap_in_use, the number of bytes in non-idle spans.

	influxdb_heap_objects, the total number of allocated objects.

	influxdb_heap_released, the number of bytes released to the operating system.

	influxdb_heap_system, the number of bytes obtained from the system.

	influxdb_garbage_collections, the number of garbage collections.

	influxdb_go_routines, the number of Golang routines.

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	The LMA Collector Plugin for Fuel 0.9.0 documentation

Index

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 _images/collector_settings.png
The Logging, Monitoring and Alerting (LMA) Collector Plugin

Versions (®) 0.9.0

Environment label | production

Events analytics (logs and notifications)

() pisabled
(®) Local node

() Remote server

Elasticsearch address ‘

Metrics analytics
() pisabled
(®) Local node
() Remote server
InfluxDB address [
nfluxDB database name | Ima

InfluxDB user ‘ Ima

InfluxDB password

Alerting

®

Optional string to tag the data. I empy, it will default to
"env-<environment id>".

1P address or fully qualified domain name of the Elasticsearch server.

1P address or fully qualified domain name of the InfluxDB server.

(®) Alerts sent to a local cluster running the LMA Infrastructure Alerting plugin (if deployed)

() Mlerts sent by email (requires a SMTP server)

() Alerts sent to a remote Nagios server

The recipient email address ‘

The sender email address |

SMTP authentication method
© None
Plain
CRAMMDS
SMTP server address
SMTP user
SMTP password

Nagios URL

Nagios user nagiosadmin

Nagios password

1P adoress (or ully qualified dormain name) and port o the SMTP server

le: hitp//<server/nagios3/cgi-bin/emd.cgi

_images/toolchain_map.png
LMA Toolchain Plugins

hitps:/igthub.comiopenstackfuel-plugin-ima-collector

LMA Collector Plugin

analysis / persistence

InfluxDB - Grafana
Plugin

metrics / annotations analytics

Elast

search - Kibana
Plugin

logs / notifications analytics

hitps:/igithub.comiopenstackfuel-plugin-influxdb-grafana

Nagios Alerting Plugin

merics / annotations analytics

hitpsigithub.com/openstack/fuel-plugin-ima-infrastructure-alerting

hitps:/igthub.com/openstack/fuel-plugin-elasticsearch-kibana

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		The LMA Collector Plugin for Fuel 0.9.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

